Série Nº1: Réduction d'endomorphismes et de matrices

Exercice 1

Soit A la matrice donnée par

$$A = \left(\begin{array}{ccc} 2 & -2 & 2\\ 2 & 2 & 2\\ 1 & 1 & 2 \end{array}\right)$$

- 1. Trouver l'endomorphisme φ associé à A relativement à la base canonique de \mathbb{R}^3 .
- 2. Calculer le déterminant de A.
- 3. Déterminer la matrice inverse A^{-1} . φ est-il bijectif?
- 4. Déterminer φ^{-1} relativement à la base canonique de \mathbb{R}^3 .
- 5. Déterminer le polynôme caractéristique de φ , le spectre de A, les valeurs propres et vecteurs propres de la matrice A.
- 6. Déterminer une matrice P et une matrice triangulaire supérieure T telles que $T = P^{-1}AP$.

Exercice 2

Soit A la matrice donnée par

$$A = \left(\begin{array}{rrr} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 1 \end{array}\right)$$

Soit φ l'endomorphisme de \mathbb{R}^3 associé à A relativement à la base canonique de \mathbb{R}^3 .

- 1. Déterminer le polynôme caractéristique de la matrice A.
- 2. Déterminer les valeurs propres et sous-espaces propres de A.
- 3. En utilisant les sous-espaces propres, déterminer une base de \mathbb{R}^3 .
- 4. La matrice A est-elle diagonalisable? si, oui diagonaliser la matrice la.

Exercice 3

Soit A la matrice donnée par

$$A = \left(\begin{array}{ccc} 8 & -1 & -5 \\ -2 & 3 & 1 \\ 4 & -1 & -1 \end{array}\right)$$

Soit φ l'endomorphisme de \mathbb{R}^3 associé à A relativement à la base canonique de \mathbb{R}^3 .

- 1. Déterminer le polynôme caractéristique de la matrice A.
- 2. Déterminer les valeurs propres et sous-espaces propres de A.
- 3. En utilisant les sous-espaces propres, déterminer une base de \mathbb{R}^3 .
- 4. La matrice A est-elle diagonalisable? si, oui diagonaliser la matrice la.

Exercice 4

Soit A la matrice donnée par

$$A = \left(\begin{array}{cccc} 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 1\\ 1/2 & 1/2 & 0 & 0\\ 0 & 0 & 1 & 0 \end{array}\right)$$

- 1. Déterminer le polynôme caractéristique de A.
- 2. Déterminer les valeurs propres et les vecteurs propres de A.
- 3. Étudier la suite A^n des puissances de A.
- 4. Trigonaliser la matrice A.

Exercice 5

1. Soit A la matrice donnée par

$$A = \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)$$

On appelle la **trace** de A le nombre noté "tr(A)" défini par tr $(A) = a_{11} + a_{22}$. Montrer que le polynôme caractéristique $P_A(x)$ de A s'écrit sous la forme

$$P_A(x) = x^2 - \operatorname{tr}(A)x + \det(A)$$

- 2. Soit A une matrice carrée d'ordre 3 dont les valeurs propres sont notées par λ_1 , λ_2 et λ_3 .
 - (a) Donner les expressions de " $\det(A)$ " et " $\operatorname{tr}(A)$ " en fonction λ_1 , λ_2 et λ_3 .
 - (b) Montrer que le polynôme caractéristique de A s'écrit sous la formr :

$$P(x) = -x^{3} + \operatorname{tr}(A)x^{2} - \left(\sum_{i=1}^{3} \det(A_{ii})\right)x + \det(A)$$

où A_{ii} est la sous matrice de A en enlevant le i^{eme} ligne et la i^{eme} colonne.

(c) Montrer que si $\lambda_1 = 1$ alors

$$\sum_{i=1}^{3} \det(A_{ii}) = \operatorname{tr}(A) + \det(A) - 1,$$

puis exprimer ce résultat en fonction de λ_2 et λ_3 .

(d) On suppose que $\lambda_1 = 1$ et $\operatorname{tr}(A) = 0$. Trouver une relation entre λ_2 et λ_3 , puis calculer λ_2 telle que $\sum_{i=1}^{3} \det(A_{ii}) = 0$.

Exercice 6

Soit M la matrice donnée par

$$M = \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ -1 & 4 & 1 & -2 \\ 2 & 1 & 2 & -1 \\ 1 & 2 & 1 & 0 \end{array}\right)$$

Soit φ l'endomorphisme de \mathbb{R}^4 associé à A relativement à la base canonique de \mathbb{R}^4 .

- 1. Déterminer les éléments propres de A.
- 2. La matrice A est-elle diagonalisable ou trigonalisable?
- 3. Déterminer une base de \mathbb{R}^4 à partir de la somme directe des sous-espaces propres de A.

Exercice 7

Soit E un espace vectoriel de dimension finie sur $\mathbb C$ et f un endomorphisme de E tel que $f^p=id_E$ l'identité de E. Soit α une racine $p^{\text{ième}}$ de l'unité et n'est pas valeur propre de f. Montrer que l'on a :

$$f^{p-1} + \alpha f^{p-2} + \ldots + \alpha^{p-1} i d_E = 0_{E,E}.$$